Зачем нужен модуль числа

Зачем нужен модуль числа

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Модуль числа — это такая забавная концепция в математике, с пониманием которой у многих людей возникают трудности.

А между тем она проста как апельсин. Но чтобы ее понять, давай сначала разберемся зачем нужен модуль.

Вот смотри, ситуация первая.

В жизни, часто встречаются ситуации, где отрицательные числа не имеют никакого практического смысла.

Например, мы не можем проехать на машине "минус 70 километров" (мы проедем 70 километров, неважно, в каком направлении), как и не можем купить "минус 5 кг апельсинов". Эти значения всегда должны быть положительными.

Именно для обозначения таких ситуаций математики придумали специальный термин – модуль или абсолютная величина.

Ситуация вторая.

Ты покупаешь пакет чипсов "Lay’s". На пакете написано, что он весит 100 грамм. Но если ты начнешь взвешивать пакеты, вряд ли они будут весить ровно 100 грамм. Какой-то из них будет весить 101 грамм, а какой-то 99.

И что, можно идти судиться с компанией Lays, если они тебе недовесили?

Нет. Потому что Lays устанавливает допуск и говорит, что пакет будет весить 100 грамм, плюс-минус 1 грамм. Вот это "плюс-минус" — это и есть модуль.

Ситуация третья.

В жизни вообще не бывает 100% точных величин. Всегда есть вот такие допуски. В зарплате, например: "Я согласен работать за 250 тыс рублей в месяц, плюс-минус 20 тыс!" 20 тысяч — это и есть модуль.

А вообще для простоты запомни, что модуль это расстояние от нуля в любую сторону.

Ну вот, ты уже почти все знаешь. Давай теперь подробнее.

Что же такое модуль числа?

Представь, что это ты.

Предположим, что ты стоишь на месте и можешь двигаться как вперёд, так и назад. Обозначим точку отправления .

Итак, ты делаешь шага вперёд и оказываешься в точке с координатой .

Это означает, что ты удалился от места, где стоял на шага ( единичных отрезка). То есть, расстояние от начала движения до точки, где ты в итоге оказался, равно .
Но ведь ты же можешь двигаться и назад!

Если от отправной точки с координатой сделать шага в обратную сторону, то окажешься в точке с координатой .

Какое расстояние было пройдено в первом и во втором случае? Конечно же, расстояние, пройденное в первом и во втором случае, будет одинаковым и равным трем, ведь обе точки ( и ), в которых ты оказался одинаково удалены от точки, из которой было начато движение ( ).

Таким образом, мы приблизились к понятию модуля . Получается, что модуль показывает расстояние от любой точки на координатном отрезке до точки начала координат.

Так, модулем числа будет . Модуль числа также равен , потому что расстояние не может быть отрицательным !

Модуль – это абсолютная величина

Обозначается модуль просто:

Итак, найдём модуль числа и :

Основные свойства модуля

Вот мы и приблизились к первому свойству модуля:

Модуль не может быть выражен отрицательным числом.

То есть, если – число положительное, то его модуль будет равен этому же числу:

если ext< >mathbf<0>,"> то .

Если – отрицательное число, то его модуль равен противоположному числу:

Читайте также:  Отладка андроид через компьютер

А если ? Ну, конечно! Его модуль также равен :

Из этого следует, что модули противоположных чисел равны, то есть:

А теперь потренируйся:

Ответы: 9; 3; 16; 8; 17.

Довольно легко, правда?

А если перед тобой вот такое число:

Как быть здесь? Как раскрыть модуль в этом случае? Действуем по тому же сценарию.

Сначала определяем знак выражения под знаком модуля, а потом раскрываем модуль :

  • если значение выражения больше нуля, то просто выносим его из-под знака модуля,
  • если же выражение меньше нуля, то выносим его из-под знака модуля, меняя при этом знак, как делали это ранее в примерах.

Ну что, попробуем? Оценим :

Если , то какой знак имеет ? Ну конечно, !

А, значит, знак модуля раскрываем, меняя знак у выражения:

Разобрался? Тогда попробуй сам:

Какими же ещё свойствами обладает модуль?

Если нам нужно перемножить числа внутри знака модуля, мы спокойно можем перемножить модули этих чисел.

Выражаясь математическим языком, модуль произведения чисел равен произведению модулей этих чисел.

А что, если нам нужно разделить два числа (выражения) под знаком модуля?

Да то же, что и с умножением! Разобьем на два отдельных числа (выражения) под знаком модуля:

при условии, что (так как на ноль делить нельзя).

Стоит запомнить ещё одно свойство модуля:

Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел:

Почему так? Всё очень просто!

Как мы помним, модуль всегда положителен. Но под знаком модуля может находиться любое число: как положительное, так и отрицательное. Допустим, что числа и оба положительные. Тогда левое выражение будет равно правому выражению.

Рассмотрим на примере:

Выражения также равны, если оба числа отрицательны:

Если же под знаком модуля одно число отрицательное, а другое положительно, левое выражение всегда окажется меньше правого:

Вроде с этим свойством все ясно, рассмотрим еще парочку полезных свойств модуля.

Что если перед нами такое выражение:

Что мы можем сделать с этим выражением? Значение x нам неизвестно, но зато мы уже знаем, что , а значит .

Число больше нуля, а значит можно просто записать:

Вот мы и пришли к другому свойству, которое в общем виде можно представить так:

А чему равно такое выражение:

Итак, нам необходимо определить знак под модулем. А надо ли здесь определять знак?

Конечно, нет, если помнишь, что любое число в квадрате всегда больше нуля! Если не помнишь, смотри тему степень и ее свойства. И что же получается? А вот что:

Здорово, да? Довольно удобно. А теперь конкретный пример для закрепления:

Ну, и почему сомнения? Действуем смело!

Во всем разобрался? Тогда вперед тренироваться на примерах!

1. Найдите значение выражения , если .

2. У каких чисел модуль равен ?

3. Найдите значение выражений:

Если не все пока ясно и есть затруднения в решениях, то давай разбираться:

Итак, подставим значения и в выражение

Как мы помним, противоположные числа по модулю равны. Значит, значение модуля, равное имеют два числа: и .

Все уловил? Тогда пора перейти к более сложному!

Попробуем упростить выражение

Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное, то мы просто можем отбросить знак: модуль числа будет равен этому числу.

Но если под знаком модуля отрицательное число, то значение модуля равно противоположному числу (то есть числу, взятому со знаком «–»).

Читайте также:  Контакт новая соц сеть

Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.

Получается, значение первого выражения под модулем .

, следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.

Итак, значение первого выражения под знаком модуля отрицательно, второго – положительно:

Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «–». Вот так:

Во втором случае просто отбросим знак модуля:

Упростим данное выражение целиком:

Модуль числа и его свойства (строгие определения и доказательства)

Модуль (абсолютная величина) числа — это само число , если , и число , если :

Термин (module) в буквальном переводе с латинского означает «мера». Это понятие было введено в математику английским учёным Р. Котесом. А немецкий математик К. Вейерштрасс ввёл в обращение знак модуля — символ, которым это понятие обозначается при написании.

Впервые данное понятие изучается в математике по программе 6 класса средней школы. Согласно одному из определений, модуль — это абсолютное значение действительного числа. Другими словами, чтобы узнать модуль действительного числа, необходимо отбросить его знак.

Графически абсолютное значение а обозначается как |a|.

Основная отличительная черта этого понятия заключается в том, что он всегда является неотрицательной величиной.

Числа, которые отличаются друг от друга только знаком, называются противоположными. Если значение положительное, то противоположное ему будет отрицательным, а ноль является противоположным самому себе.

Геометрическое значение

Если рассматривать понятие модуля с позиций геометрии, то он будет обозначать расстояние, которое измеряется в единичных отрезках от начала координат до заданной точки. Это определение полностью раскрывает геометрический смысл изучаемого термина.

  1. Для примера можно взять координатную прямую и на ней нанести 2 произвольные точки. Допустим, одна из точек (А) будет иметь числовое значение 5, а вторая (В) — 6.
  2. Если рассмотреть полученный чертёж, можно увидеть, что точка, А находится на расстоянии 5 единиц от нуля (начала координат). Точка В находится от нуля на 6 единиц. Таким образом, модулем точки, А будет число 5, а модулем точки В — число 6.
  3. В этом случае графическое обозначение выражения будет следующим: | 5 | = 5.
  4. Иными словами, если взять любое произвольное число и обозначить его на координатной прямой в виде точки А, то расстояние от нуля до этой точки и будет модулем числа А.

Графически это можно выразить следующим образом: |a| = OA.

Свойства абсолютной величины

Ниже будут рассмотрены все математические свойства этого понятия и способы записи в виде буквенных выражений:

  1. Модулем любой цифры является величина неотрицательная. Таким образом, абсолютным значением положительной величины будет выступать она сама. Графически эта закономерность выражается следующим образом: |a| = a, если a> 0.
  2. Модули противоположных величин равны друг другу Это объясняется тем фактом, что на координатной прямой противоположные числа хотя и располагаются в разных точках, но находятся на одинаковом расстоянии от начальной точки отсчёта. Графически это выражается как: |а| = |-а|.
  3. Третьим свойством является то, что абсолютным значением нуля равняется сам нуль. Это условие считается верным в том случае, когда действительное число является нулем. Поскольку нулю соответствует начало отсчета в системе координат, то модулем числа ноль является сам ноль по определению. Графически: |0| = 0|.
  4. Еще одним важным свойством является то, что абсолютное значение произведений двух любых действительных чисел равняется произведению двух этих величин. Это условие необходимо рассмотреть более подробно. Иначе говоря, абсолютным значением произведения величин, А и В будет АВ в случае если оба этих значения положительные или же оба отрицательные, или -АВ при условии, что одно из этих чисел будет отрицательным. В записи эта закономерность будет выглядеть следующим образом: |А*В| = |А| * |В|.
  5. Абсолютная величина суммы любых двух действительных чисел меньше или равна сумме их модулей.
  6. Абсолютная величина разности двух произвольных величин меньше или равна разности двух абсолютных величин.
  7. Если в математическом выражении имеется постоянный положительный множитель, его можно выносить за знак | |.
  8. Такое же правило распространяется и на показатель степени выражения.
Читайте также:  Как составлять кроссворд на бумаге

Особенности решения уравнений с модулем

Если говорить о решении математических уравнений и неравенств, в которых содержится module, то необходимо помнить, что для их решения потребуется открыть этот знак.

К примеру, если знак абсолютной величины содержит в себе некоторое математическое выражение, то перед тем как раскрыть модуль, необходимо учитывать действующие математические определения.

|А + 5| = А + 5, если, А больше или равняется нулю.

5-А, если, А значение меньше нуля.

В некоторых случаях знак может раскрываться однозначно при любых значениях переменной.

Рассмотрим ещё одни пример. Построим координатную прямую, на которой отметим все числовые значения абсолютной величиной которых будет 5.

Для начала необходимо начертить координатную прямую, обозначить на ней начало координат и задать размер единичного отрезка. Кроме того, прямая должна иметь направление. Теперь на этой прямой необходимо нанести разметки, которые будут равны величине единичного отрезка.

Таким образом, мы можем увидеть, что на этой координатной прямой будут две интересующие нас точки со значениями 5 и -5.

Модуль числа легко найти, и теория, которая лежит в его основе, важна при решении задач.

Свойства и правила раскрытия, используемые при решении упражнений и на экзаменах, будут полезны школьникам и студентам. Заработай деньги с помощью своих знаний на https://teachs.ru!

Что такое модуль в математике

Модуль числа описывает расстояние на числовой линии от нуля до точки без учета того, в каком направлении от нуля лежит точка. Математическое обозначение: |x|.

Иными словами, это абсолютная величина числа. Определение доказывает, что значение никогда не бывает отрицательным.

Свойства модуля

Важно помнить о следующих свойствах:

  1. Правило раскрытия: абсолютная величина любого числа больше или равна нулю:
  2. Если абсолютные значения содержат выражения противоположных значений, они равны:
  3. Значение числа не превышает величину его модуля:
  4. Правило раскрытия при произведении:
  5. Правило, применимое при делении:
  6. При возведении в степень:
  7. Сумма величин:
  8. Двойной модуль:

Модуль комплексного числа

Абсолютной величиной комплексного числа называют длину направленного отрезка, проведенного от начала комплексной плоскости до точки (a, b).

Этот направленный отрезок также является вектором, представляющим комплексное число a + bi, поэтому абсолютная величина комплексного числа – это то же самое, что и величина (или длина) вектора, представляющего a+ bi.

Как решать уравнения с модулем

Уравнение с модулем – это равенство, которое содержит выражение абсолютного значения. Если для действительного числа оно представляет его расстояние от начала координат на числовой линии, то неравенства с модулем являются типом неравенств, которые состоят из абсолютных значений.

Уравнения типа |x| = a

Уравнение |x| = a имеет два ответа x = a и x = –a, потому что оба варианта находятся на координатной прямой на расстоянии a от 0.

Равенство с абсолютной величиной не имеет решения, если величина отрицательная.

Ссылка на основную публикацию
Есть ли кнопочные телефоны на андроиде
Несмотря на явный прогресс в сфере мобильных коммуникаций, ознаменовавшийся появлением смартфонов с сенсорным экраном и операционной системой Андроид, находится достаточно...
Движение тела в диссипативной среде
ДИССИПАТИВНАЯ СРЕДА - распределённая физ. система, в к-рой энергия одних движений или полей (обычно упорядоченных) необратимым образом переходит в энергию...
Двигатель от струйного принтера
Разделы сайта Интересное предложение Лучшее Статистика Designed by: Наверное каждый кто имел дело с утилизацией старой техники не однократно ломал...
Есть ли портретный режим в iphone 7
Самые интересные новости о технике Apple и не только. Как сделать портрет на iPhone 7 и iPhone 8? Перенесемся на...
Adblock detector