Электронная нагрузка на биполярных транзисторах

Электронная нагрузка на биполярных транзисторах

Обычно при изготовлении (как впрочем и при ремонте) блоков питания или преобразователей напряжения требуется проверить их работоспособность под нагрузкой. И тут начинаются поиски. В ход идёт всё, что есть под рукой: различные лампы накаливания, старые электронные лампы, мощные резисторы и тому подобное. Подбирать нужную нагрузку таким образом — это невероятно затратное (как по времени, так и по нервам) занятие. Вместо этого очень удобно пользоваться электронной регулируемой нагрузкой. Нет, нет, не надо ничего покупать. Сделать такую нагрузку сможет даже школьник. Всё, что нужно, — это мощный полевик, операционный усилитель, несколько резисторов и радиатор побольше. Схема — более чем простая и, тем не менее, отлично работает.

Идея заключается в том, чтобы с помощью операционника стабилизировать падение напряжения на специальном токоизмерительном резисторе. Делается это следующим образом: на неинвертирующий вход операционника подаётся некое опорное напряжение, а на инвертирующий вход — падение напряжения на токоизмерительном резисторе. Операционник обладает таким свойством, что в установившемся режиме, разность напряжений на инвертирующем и неинвертирующем входах равна нулю (если конечно он не находится в режиме насыщения, но нам для того и мозг с калькулятором, чтобы всё посчитать и подобрать). Выход операционного усилителя подается на затвор MOSFET и, таким образом, управляет степенью открытия полевого транзистора, и, следовательно, током через него. А чем больше ток через полевик, тем больше падение напряжения на токоизмерительном резисторе. Получается отрицательная обратная связь.

То есть, если в результате нагрева характеристики полевика изменятся так, что ток через него увеличится, то это вызовет увеличение падения напряжения на токоизмерительном резисторе, появится отрицательная разность напряжений (ошибка) на входах ОУ и выходное напряжение операционника начнёт уменьшаться (при этом начнёт уменьшаться степень открытия полевика и ток через него), до тех пор, пока ошибка не станет равной нулю. Если же ток через полевик по каким-либо причинам уменьшится, то это вызовет уменьшение падения напряжения на токоизмерительном резисторе, появится положительная разность напряжений (ошибка) на входах ОУ и выходное напряжение операционника начнёт увеличиваться (при этом начнёт увеличиваться степень открытия полевика и ток через него), до тех пор, пока ошибка не станет равной нулю. Короче, такая схема стабилизирует падение напряжения на токоизмерительном резисторе — оно после всех переходных процессов устанавливается равным опорному напряжению (которое подаётся на неинвертирующий вход).

Изменяя в этой схеме опорное напряжение, можно произвольным образом регулировать ток через полевик, причём заданный ток получается стабильным, поскольку зависит только от величины опорного напряжения и сопротивления токоизмерительного резистора, и не зависит от параметров MOSFET, которые могут очень сильно меняться в результате нагрева. Опорное напряжение можно задавать простым делителем, а регулировать — подстроечными резисторами.

Операционный усилитель — любой, допускающий однополярное питание, я использовал OP220.

T1 — мощный MOSFET, любой, лишь бы мощность побольше мог рассеять, я брал CEP603AL из старого компьютерного блока питания. (тут понятное дело есть ограничение по напряжению открытия полевика и току через него, но об этом ниже)

Rti — токоизмерительный резистор на десятые доли Ом, таких полно везде: в принтерах, в мониторах и т.д., я брал из принтера 0,22 Ом, 3 Вт

Rnd = 10 кОм — резистор, определяющий диапазон задания тока

Rkd = 10 кОм — резистор, определяющий начальный диапазон задания тока

Rgn = 2 кОм — резистор, с помощью которого выставляется ток в пределах заданного диапазона

Rtn = 330 Ом — резистор, необходимый для точной подстройки заданного тока

Отличные подстроечники, с удобными ручками, можно снять с плат старых компьютерных мониторов.

Итак, теперь посмотрим, как это всё рассчитывается:

U2=Iн*Rti, где Iн — ток нагрузки, U2 — падение напряжения на токоизмерительном резисторе (и, соответственно, напряжение на инвертирующем входе ОУ)

Читайте также:  Во что можно поиграть словами

Из условия равенства напряжений на входах ОУ, имеем:

Подставив в это выражение номиналы наших резисторов, определим диапазоны настройки тока:

при Rnd=10 кОм, получаем Iн = Uп*2,33/((2,33+10+10)*0,22)=Uп*0,47

при Rnd=0, получаем: Iн = Uп*2,33/((2,33+10)*0,22)=Uп*0,86

То есть, изменяя сопротивление резистора Rnd от 10 кОм до нуля, мы изменяем верхнюю границу диапазона настройки тока от 0,47*Uп до 0,86*Uп. Это означает, что, например, для питания +10В мы сможем настраивать ток в диапазоне от 0 до 4,7 А или от 0 до 8,6 А, в зависимости от сопротивления резистора Rnd, а для питания +5В от 0 до 2,35 А или от 0 до 4,3 А. В заданном диапазоне ток настраивается подстроечниками Rgn (грубо) и Rtn (точно).

Есть три ограничения. Первое ограничение связано с токоизмерительным резистором. Поскольку этот резистор рассчитан на максимальную рассеиваемую мощность PR, то максимальный ток через него не должен превышать значения, определяемого выражением: I 2 макс=PR/Rti. Для указанных номиналов: I 2 макс=(3/0,22), Iмакс=3,7 А. Увеличить это значение можно выбрав резистор с меньшим сопротивлением (тогда диапазоны тоже придётся пересчитать), применив радиатор или соединив параллельно несколько таких резисторов.

Вторые два ограничения связаны с транзистором. Во-первых, на транзисторе выделяется основная рассеиваемая мощность (поэтому для лучшего теплоотвода следует прикрутить к нему радиатор размером побольше). Во-вторых, транзистор начинает открываться, когда напряжение между затвором и истоком (Vgs превысит некоторое пороговое значение, threshold voltage), так что девайс не будет работать, если напряжение питания меньше этого порогового значения. Эта же величина будет влиять и на максимальный возможный ток при заданном напряжении питания.

Обычно при изготовлении (как впрочем и при ремонте) блоков питания или преобразователей напряжения требуется проверить их работоспособность под нагрузкой. И тут начинаются поиски. В ход идёт всё, что есть под рукой: различные лампы накаливания, старые электронные лампы, мощные резисторы и тому подобное. Подбирать нужную нагрузку таким образом — это невероятно затратное (как по времени, так и по нервам) занятие. Вместо этого очень удобно пользоваться электронной регулируемой нагрузкой. Нет, нет, не надо ничего покупать. Сделать такую нагрузку сможет даже школьник. Всё, что нужно, — это мощный полевик, операционный усилитель, несколько резисторов и радиатор побольше. Схема — более чем простая и, тем не менее, отлично работает.

Идея заключается в том, чтобы с помощью операционника стабилизировать падение напряжения на специальном токоизмерительном резисторе. Делается это следующим образом: на неинвертирующий вход операционника подаётся некое опорное напряжение, а на инвертирующий вход — падение напряжения на токоизмерительном резисторе. Операционник обладает таким свойством, что в установившемся режиме, разность напряжений на инвертирующем и неинвертирующем входах равна нулю (если конечно он не находится в режиме насыщения, но нам для того и мозг с калькулятором, чтобы всё посчитать и подобрать). Выход операционного усилителя подается на затвор MOSFET и, таким образом, управляет степенью открытия полевого транзистора, и, следовательно, током через него. А чем больше ток через полевик, тем больше падение напряжения на токоизмерительном резисторе. Получается отрицательная обратная связь.

То есть, если в результате нагрева характеристики полевика изменятся так, что ток через него увеличится, то это вызовет увеличение падения напряжения на токоизмерительном резисторе, появится отрицательная разность напряжений (ошибка) на входах ОУ и выходное напряжение операционника начнёт уменьшаться (при этом начнёт уменьшаться степень открытия полевика и ток через него), до тех пор, пока ошибка не станет равной нулю. Если же ток через полевик по каким-либо причинам уменьшится, то это вызовет уменьшение падения напряжения на токоизмерительном резисторе, появится положительная разность напряжений (ошибка) на входах ОУ и выходное напряжение операционника начнёт увеличиваться (при этом начнёт увеличиваться степень открытия полевика и ток через него), до тех пор, пока ошибка не станет равной нулю. Короче, такая схема стабилизирует падение напряжения на токоизмерительном резисторе — оно после всех переходных процессов устанавливается равным опорному напряжению (которое подаётся на неинвертирующий вход).

Читайте также:  Телефон с диагональю 6 и более

Изменяя в этой схеме опорное напряжение, можно произвольным образом регулировать ток через полевик, причём заданный ток получается стабильным, поскольку зависит только от величины опорного напряжения и сопротивления токоизмерительного резистора, и не зависит от параметров MOSFET, которые могут очень сильно меняться в результате нагрева. Опорное напряжение можно задавать простым делителем, а регулировать — подстроечными резисторами.

Операционный усилитель — любой, допускающий однополярное питание, я использовал OP220.

T1 — мощный MOSFET, любой, лишь бы мощность побольше мог рассеять, я брал CEP603AL из старого компьютерного блока питания. (тут понятное дело есть ограничение по напряжению открытия полевика и току через него, но об этом ниже)

Rti — токоизмерительный резистор на десятые доли Ом, таких полно везде: в принтерах, в мониторах и т.д., я брал из принтера 0,22 Ом, 3 Вт

Rnd = 10 кОм — резистор, определяющий диапазон задания тока

Rkd = 10 кОм — резистор, определяющий начальный диапазон задания тока

Rgn = 2 кОм — резистор, с помощью которого выставляется ток в пределах заданного диапазона

Rtn = 330 Ом — резистор, необходимый для точной подстройки заданного тока

Отличные подстроечники, с удобными ручками, можно снять с плат старых компьютерных мониторов.

Итак, теперь посмотрим, как это всё рассчитывается:

U2=Iн*Rti, где Iн — ток нагрузки, U2 — падение напряжения на токоизмерительном резисторе (и, соответственно, напряжение на инвертирующем входе ОУ)

Из условия равенства напряжений на входах ОУ, имеем:

Подставив в это выражение номиналы наших резисторов, определим диапазоны настройки тока:

при Rnd=10 кОм, получаем Iн = Uп*2,33/((2,33+10+10)*0,22)=Uп*0,47

при Rnd=0, получаем: Iн = Uп*2,33/((2,33+10)*0,22)=Uп*0,86

То есть, изменяя сопротивление резистора Rnd от 10 кОм до нуля, мы изменяем верхнюю границу диапазона настройки тока от 0,47*Uп до 0,86*Uп. Это означает, что, например, для питания +10В мы сможем настраивать ток в диапазоне от 0 до 4,7 А или от 0 до 8,6 А, в зависимости от сопротивления резистора Rnd, а для питания +5В от 0 до 2,35 А или от 0 до 4,3 А. В заданном диапазоне ток настраивается подстроечниками Rgn (грубо) и Rtn (точно).

Есть три ограничения. Первое ограничение связано с токоизмерительным резистором. Поскольку этот резистор рассчитан на максимальную рассеиваемую мощность PR, то максимальный ток через него не должен превышать значения, определяемого выражением: I 2 макс=PR/Rti. Для указанных номиналов: I 2 макс=(3/0,22), Iмакс=3,7 А. Увеличить это значение можно выбрав резистор с меньшим сопротивлением (тогда диапазоны тоже придётся пересчитать), применив радиатор или соединив параллельно несколько таких резисторов.

Вторые два ограничения связаны с транзистором. Во-первых, на транзисторе выделяется основная рассеиваемая мощность (поэтому для лучшего теплоотвода следует прикрутить к нему радиатор размером побольше). Во-вторых, транзистор начинает открываться, когда напряжение между затвором и истоком (Vgs превысит некоторое пороговое значение, threshold voltage), так что девайс не будет работать, если напряжение питания меньше этого порогового значения. Эта же величина будет влиять и на максимальный возможный ток при заданном напряжении питания.

Многие могут сказать, что достаточно использовать мощные переменные или постоянные резисторы, автомобильные лампы или попросту нихромовые спирали. У каждого метода есть свои недостатки и преимущества, но главное — при использование этих методов плавной регулировки тока добиться довольно сложно.

Читайте также:  Почему быстро заряжается аккумулятор телефона

Поэтому я собрал для себе электронную нагрузку на операционном усилители LM358 и составном транзисторе КТ827Б с испытанием источников питания напряжением от 3 В до 35В. В этом устройстве ток через нагрузочный элемент стабилизирован, поэтому он практически не подвержен температурному дрейфу и не зависит от напряжения проверяемого источника, что очень удобно при снятии нагрузочных характеристик и проведении других испытаний, особенно длительных.

Материалы:
— микросхема LM358;
— транзистор КТ827Б (NPN транзистор составной);
— резистор 0,1 Ом 5 Вт;
— резистор 100 Ом;
— резистор 510 Ом;
— резистор 1 кОм;
— резистор 10 кОм;
— переменный резистор 220 кОм;
— конденсатор не полярный 0,1 мкФ;
— 2 шт конденсатор оксидный 4.7 мкФ х 16В;
— конденсатор оксидный 10 мкФ х 50В;
— алюминиевый радиатор;
— стабильный источник питания 9-12 В.

Инструменты:
— паяльник, припой, флюс;
— электродрель;
— лобзик;
— сверла;
— метчик М3.

Инструкция по сборке устройства:

Принцип действия. Устройство по принципу работы является источником тока, который управляется напряжением. Мощный составной биполярный транзистор КТ 827Б с током коллектора Iк= 20А, коэффициентом усиления h21э более 750 и максимальной рассеиваемой мощностью 125 Вт является эквивалентом нагрузки. Резистор R1 мощностью 5Вт — датчик тока. Резистором R5 изменяют ток через резистор R2 либо R3 в зависимости от положения переключателя и соответственно напряжение на нем. На операционном усилители LM358 и транзисторе КТ 827Б собран усилитель с отрицательной обратной связью с эмиттера транзистора на инвертирующий вход операционного усилителя. Действие ООС проявляется в том, что напряжение на выходе ОУ вызывает такой ток через транзистор VT1, чтобы напряжение на резисторе R1 было равно напряжению на резисторе R2 (R3). Поэтому резистором R5 регулируют напряжение на резисторе R2 (R3) и соответственно ток через нагрузку (транзистор VT1). Пока ОУ находится в линейном режиме, указанное значение тока через транзистор VT1 не зависит ни от напряжения на его коллекторе, ни от дрейфа параметров транзистора при его разогреве. Цепь R4C4 подавляет самовозбуждение транзистора и обеспечивает его устойчивую работу в линейном режиме. Для питания устройства необходимо напряжение от 9 В до 12 В, которое обязательно должно быть стабильным, поскольку от него зависит стабильность тока нагрузки. Устройство потребляет не более 10 мА.

Но при этом есть риск теплового пробоя полевого транзистора при быстром изменении проходящего тока от 1А до 10А. Скорее всего корпус ТО-220 не способен передать такое количество тепла за столь малое время и закипает изнутри! Ко всему можно добавить, что еще можно нарваться на подделку радиодетали и тогда параметры транзистора будут совсем непредсказуемы! То ли алюминиевый корпус КТ-9 транзистора КТ827!

Возможно проблему можно решить установив параллельно 1-2 таких же транзисторов, но практически я не проверял — отсутствуют в наличии те самые транзисторы IRF3205 в нужном количестве.

Корпус для электронной нагрузки применил от неисправной автомагнитолы. Ручка для переноса устройства присутствует. Снизу установил резиновые ножки для предотвращения скольжения. В качестве ножек использовал крышечки от пузырьков для медицинских препаратов.

Заключение
С данной электронной нагрузки я смог выжать порядка 100 Вт при питании 12В, может возможно и более, но проверить нечем. Плавная регулировка тока, минимальный температурный дрейф и независимость от напряжения проверяемого источника позволяет более точно определить характеристики испытуемого источника питания.

Данное устройство подходит для тестирования единичных источников питания, но если подойти с умом к делу, то можно создать на его основе много канальное устройство для проверки, к примеру, компьютерного БП.

Ссылка на основную публикацию
Что такое экранное время в ios
Экранное время – одна из лучших функций iOS 12, позволяющая следить за тем, как часто вы берёте в руки свой...
Что делать если отключился звук на компьютере
Мы зарегистрировали подозрительный трафик, исходящий из вашей сети. С помощью этой страницы мы сможем определить, что запросы отправляете именно вы,...
Что делать если полетели драйвера видеокарты
Распространенная ошибка в Windows 7 и реже в Windows 10 и 8 — сообщение «Видеодрайвер перестал отвечать и был успешно...
Что такое эмодзи клавиатура на телефоне
Современное общение сложно представить без мессенджеров, чатов и социальных сетей, но только текстом бывает сложно передать все эмоции. В этом...
Adblock detector