Что называется ветвью узлом контуром электрической цепи

Что называется ветвью узлом контуром электрической цепи

Электрическая цепь и её элементы. Электрическая схема, понятия: ветвь, узел, контур.

Электрическая цепь — совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятии об электродвижущей силе, токе и напряжении.

Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя. Т.е. электрическая цепь — совокупность соединенных между собой источников электрической энергии, приемников и соединяющих их проводов (линия передачи).

Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.

Узел. Узел – это точка электрической цепи, где сходится не менее трех ветвей. Узел обозначается на схеме жирной точкой ( ) в том месте, где ветви соединяются между собой. В качестве примера на рис. 19 показаны узлы A,B,C. Узлы в схеме, показанной на рис. 20, определите самостоятельно.

Ветвь. Ветвь – это участок электрической цепи с последовательным соединением элементов, расположенный между двумя узлами. Подчеркнем, что именно споследовательным соединением элементов. Например на рис. 19 участок цепи между узлами А и В является ветвью. Ветвью является и участок цепи между узлами В иС. А вот участок цепи между узлами А и С ветвью не является. Сами подумайте почему. В схеме, показанной на рис. 20, имеется 6 ветвей. Определите их самостоятельно.

Контур. Контуром называют любой замкнутый участок электрической цепи. Особо следует выделить понятие «независимый контур». Независимый контур – это контур, в который входит хотя бы одна ветвь, не входящая в другие контуры.

Работа и мощность в цепи постоянного тока.

Работа тока— это работа электрического поля по переносу электрических зарядов вдоль проводника;
Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

По закону сохранения энергии:

работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия
равна работе тока.

ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.

[Q] = 1 Дж

МОЩНОСТЬ ПОСТОЯННОГО ТОКА

— отношение работы тока за время t к этому интервалу времени.

Первый закон Кирхгофа.

Сколько тока втекает в узел, столько из него и вытекает. i2 + i3 = i1 + i4

Первое правило Кирхгофа (правило токов Кирхгофа) гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом втекающий в узел ток принято считать положительным, а вытекающий — отрицательным:

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда.

7. Расчет цепи методом эквивалентных структурных преобразований.

Метод эквивалентных структурных преобразований.

В основе различных методов преобразования электрических схем лежит понятие эквивалентности, согласно которому напряжения и токи в ветвях схемы, не затронутых преобразованием, остаются неизменными. Преобразования электрических схем применяются для упрощения расчетов. Рассмотрим наиболее типичные методы преобразования. Последовательное соединение элементов.

При последовательном соединении элементов через них протекает один и тот же ток I (рис. 1.18). Согласно второму закону Кирхгофа, напряжение, приложенное ко всей цепи

(1.27)

Для последовательного соединения сопротивлений r1,r2. rn (рис. 1.18) с учетом (1.6) будем иметь

(1.28)

Ток в цепи с последовательным соединением элементов равен:

(1.29)

а напряжение на n-ом элементе равно

(1.30)

При последовательном соединении источников напряжения они заменяются одним эквивалентным источником с напряжением Uэкв, равным алгебраической сумме напряжений отдельных источников. Причем со знаком «+» берутся напряжения, совпадающие с напряжением эквивалентного источника, а со знаком «-» — несовпадающие (рис. 1.19).

Параллельное соединение элементов.

Соединение групп элементов, при котором все элементы находятся под одним и тем же напряжением, называется параллельным (рис. 1.20). Согласно первому Кирхгофа, ток всей цепи I равен алгебраической сумме токов в параллельных ветвях, т.е.

(1.31)

На основании этого уравнения с учетом (1.8) для параллельного соединения резистивных элементов получаем:

(1.32)

где -эквивалентная проводимость.

Токи и мощности параллельно соединенных ветвей при U=const (рис. 1.20) не зависят друг от друга и определяются по формулам:

(1.33)

Мощность всей цепи равна :

, (1.34)

где rэ=1/gэ -эквивалентное сопротивление цепи.

При увеличении числа параллельных ветвей эквивалентная проводимость электрической цепи возрастает, а эквивалентное сопротивление соответственно уменьшается. Это приводит к увеличению тока I. Если напряжение остается постоянным, то увеличивается также общая мощность Р. Токи и мощности ранее включенных ветвей не изменяются.

Рассмотрим частные случаи параллельного соединения резистивных элементов.

а) параллельное соединение двух элементов

б) параллельное соединение n ветвей с одинаковыми сопротивлениями

(1.36)

Баланс мощностей.

Все расчеты в электрических цепях проверяют балансом мощностей.

Баланс основан на законе сохранения и превращения энергии: сколько энергии выработали источники, столько же ее нагрузки должны потребить. Вместо энергии в балансе можно использовать мощность. Выработанная мощность всеми источниками должна быть равна суммарной мощности, расходуемой в нагрузках.

Читайте также:  Что такое инсталляция деинсталляция программного обеспечения

Баланс мощностей можно сформулировать так: алгебраическая сумма мощностей источников, должна быть равна арифметической сумме мощностей нагрузок. Если направление ЭДС и направление тока ветви не совпадают, то составляющая мощности этого источника в балансе мощностей берется со знаком «минус».

Мощность, отдаваемая источниками ЭДС, равна.

PИ = E I

Если в резисторе не происходит химических реакций, то мощность выделяется в форме тепла, согласно известному закону Джоуля.

PП = R I 2

где:
I — постоянный ток (А), протекающий через резистор;
PП — мощность потерь, измеряемая в ваттах (Вт);
R — сопротивление резистора (Ом).

Равенство выражений мощностей источников и мощностей приемников называется уравнением баланса мощностей.

План составления баланса мощностей

1. Если в цепи есть источники тока, то следует любым методом найти напряжения на зажимах источников тока Uk.

Цепи с источником тока

2. вычислить мощность источников.

PИ = n m
k = 1 Uk * Jk + k = 1 Ek * Ik

3.
где:
N — количество источников тока в цепи;
M — количество источников ЭДС в цепи;
Uk — напряжение на источниках тока Jk;

m
k = 1 Ek * Ik
— алгебраическая сумма, здесь положительны те из слагаемых, для которых направления ЭДС Еk и соответствующего тока Ik совпадают, в противном случаи слагаемое отрицательно;
n k = 1 Uk * Jk — алгебраическая сумма, здесь положительны те из слагаемых, для которых направление напряжения на зажимах источника тока Uk и направление его тока Jk во внешней цепи совпадают, в противном случаи слагаемое отрицательно.

4. вычислить мощность, расходуемую в приемниках.

PП = L
k = 1 I 2 k * Rk
L количество приемников в цепи;
L
k = 1 I 2 k * Rk
— арифметическая сумма, здесь должны быть учтены как внешние резисторы, так и внутренние сопротивления самих источников.

6. Получаем равенство.

РИ = РП

Мощность трехфазной цепи.

При неравномерной нагрузке фаз активная мощность Р трехфазной системы равна сумме мощностей отдельных ее фаз:

При равномерной нагрузке трехфазной системы активные мощности Рф всех трех фаз равны, поэтому активная мощность трехфазной системы

где ? — угол сдвига фаз между фазным током и фазным напряжением.

Активную мощность можно выразить также через линейные ток Iл и напряжение Uл. Учитывая зависимости между фазными и линейными токами и напряжениями для схем «звезда» и «треугольник» при равномерной нагрузке фаз, имеем:

Аналогично могут быть получены формулы для реактивной и полной мощностей при равномерной нагрузке фаз:

Электрическая цепь и её элементы. Электрическая схема, понятия: ветвь, узел, контур.

Электрическая цепь — совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятии об электродвижущей силе, токе и напряжении.

Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя. Т.е. электрическая цепь — совокупность соединенных между собой источников электрической энергии, приемников и соединяющих их проводов (линия передачи).

Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.

Узел. Узел – это точка электрической цепи, где сходится не менее трех ветвей. Узел обозначается на схеме жирной точкой ( ) в том месте, где ветви соединяются между собой. В качестве примера на рис. 19 показаны узлы A,B,C. Узлы в схеме, показанной на рис. 20, определите самостоятельно.

Ветвь. Ветвь – это участок электрической цепи с последовательным соединением элементов, расположенный между двумя узлами. Подчеркнем, что именно споследовательным соединением элементов. Например на рис. 19 участок цепи между узлами А и В является ветвью. Ветвью является и участок цепи между узлами В иС. А вот участок цепи между узлами А и С ветвью не является. Сами подумайте почему. В схеме, показанной на рис. 20, имеется 6 ветвей. Определите их самостоятельно.

Контур. Контуром называют любой замкнутый участок электрической цепи. Особо следует выделить понятие «независимый контур». Независимый контур – это контур, в который входит хотя бы одна ветвь, не входящая в другие контуры.

Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы

Электрическая цепь и её элементы. Электрическая схема, понятия: ветвь, узел, контур.

Электрическая цепь — совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятии об электродвижущей силе, токе и напряжении.

Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя. Т.е. электрическая цепь — совокупность соединенных между собой источников электрической энергии, приемников и соединяющих их проводов (линия передачи).

Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.

Узел. Узел – это точка электрической цепи, где сходится не менее трех ветвей. Узел обозначается на схеме жирной точкой ( ) в том месте, где ветви соединяются между собой. В качестве примера на рис. 19 показаны узлы A,B,C. Узлы в схеме, показанной на рис. 20, определите самостоятельно.

Читайте также:  Компьютер запускается не сразу после включения

Ветвь. Ветвь – это участок электрической цепи с последовательным соединением элементов, расположенный между двумя узлами. Подчеркнем, что именно споследовательным соединением элементов. Например на рис. 19 участок цепи между узлами А и В является ветвью. Ветвью является и участок цепи между узлами В иС. А вот участок цепи между узлами А и С ветвью не является. Сами подумайте почему. В схеме, показанной на рис. 20, имеется 6 ветвей. Определите их самостоятельно.

Контур. Контуром называют любой замкнутый участок электрической цепи. Особо следует выделить понятие «независимый контур». Независимый контур – это контур, в который входит хотя бы одна ветвь, не входящая в другие контуры.

Работа и мощность в цепи постоянного тока.

Работа тока— это работа электрического поля по переносу электрических зарядов вдоль проводника;
Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

По закону сохранения энергии:

работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия
равна работе тока.

ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.

[Q] = 1 Дж

МОЩНОСТЬ ПОСТОЯННОГО ТОКА

— отношение работы тока за время t к этому интервалу времени.

Первый закон Кирхгофа.

Сколько тока втекает в узел, столько из него и вытекает. i2 + i3 = i1 + i4

Первое правило Кирхгофа (правило токов Кирхгофа) гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом втекающий в узел ток принято считать положительным, а вытекающий — отрицательным:

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда.

7. Расчет цепи методом эквивалентных структурных преобразований.

Метод эквивалентных структурных преобразований.

В основе различных методов преобразования электрических схем лежит понятие эквивалентности, согласно которому напряжения и токи в ветвях схемы, не затронутых преобразованием, остаются неизменными. Преобразования электрических схем применяются для упрощения расчетов. Рассмотрим наиболее типичные методы преобразования. Последовательное соединение элементов.

При последовательном соединении элементов через них протекает один и тот же ток I (рис. 1.18). Согласно второму закону Кирхгофа, напряжение, приложенное ко всей цепи

(1.27)

Для последовательного соединения сопротивлений r1,r2. rn (рис. 1.18) с учетом (1.6) будем иметь

(1.28)

Ток в цепи с последовательным соединением элементов равен:

(1.29)

а напряжение на n-ом элементе равно

(1.30)

При последовательном соединении источников напряжения они заменяются одним эквивалентным источником с напряжением Uэкв, равным алгебраической сумме напряжений отдельных источников. Причем со знаком «+» берутся напряжения, совпадающие с напряжением эквивалентного источника, а со знаком «-» — несовпадающие (рис. 1.19).

Параллельное соединение элементов.

Соединение групп элементов, при котором все элементы находятся под одним и тем же напряжением, называется параллельным (рис. 1.20). Согласно первому Кирхгофа, ток всей цепи I равен алгебраической сумме токов в параллельных ветвях, т.е.

(1.31)

На основании этого уравнения с учетом (1.8) для параллельного соединения резистивных элементов получаем:

(1.32)

где -эквивалентная проводимость.

Токи и мощности параллельно соединенных ветвей при U=const (рис. 1.20) не зависят друг от друга и определяются по формулам:

(1.33)

Мощность всей цепи равна :

, (1.34)

где rэ=1/gэ -эквивалентное сопротивление цепи.

При увеличении числа параллельных ветвей эквивалентная проводимость электрической цепи возрастает, а эквивалентное сопротивление соответственно уменьшается. Это приводит к увеличению тока I. Если напряжение остается постоянным, то увеличивается также общая мощность Р. Токи и мощности ранее включенных ветвей не изменяются.

Рассмотрим частные случаи параллельного соединения резистивных элементов.

а) параллельное соединение двух элементов

б) параллельное соединение n ветвей с одинаковыми сопротивлениями

(1.36)

Баланс мощностей.

Все расчеты в электрических цепях проверяют балансом мощностей.

Баланс основан на законе сохранения и превращения энергии: сколько энергии выработали источники, столько же ее нагрузки должны потребить. Вместо энергии в балансе можно использовать мощность. Выработанная мощность всеми источниками должна быть равна суммарной мощности, расходуемой в нагрузках.

Баланс мощностей можно сформулировать так: алгебраическая сумма мощностей источников, должна быть равна арифметической сумме мощностей нагрузок. Если направление ЭДС и направление тока ветви не совпадают, то составляющая мощности этого источника в балансе мощностей берется со знаком «минус».

Мощность, отдаваемая источниками ЭДС, равна.

PИ = E I

Если в резисторе не происходит химических реакций, то мощность выделяется в форме тепла, согласно известному закону Джоуля.

PП = R I 2

где:
I — постоянный ток (А), протекающий через резистор;
PП — мощность потерь, измеряемая в ваттах (Вт);
R — сопротивление резистора (Ом).

Равенство выражений мощностей источников и мощностей приемников называется уравнением баланса мощностей.

План составления баланса мощностей

1. Если в цепи есть источники тока, то следует любым методом найти напряжения на зажимах источников тока Uk.

Цепи с источником тока

2. вычислить мощность источников.

PИ = n m
k = 1 Uk * Jk + k = 1 Ek * Ik

3.
где:
N — количество источников тока в цепи;
M — количество источников ЭДС в цепи;
Uk — напряжение на источниках тока Jk;

m
k = 1 Ek * Ik
— алгебраическая сумма, здесь положительны те из слагаемых, для которых направления ЭДС Еk и соответствующего тока Ik совпадают, в противном случаи слагаемое отрицательно;
Читайте также:  Какой объем памяти занимает страница напечатанного текста
n k = 1 Uk * Jk — алгебраическая сумма, здесь положительны те из слагаемых, для которых направление напряжения на зажимах источника тока Uk и направление его тока Jk во внешней цепи совпадают, в противном случаи слагаемое отрицательно.

4. вычислить мощность, расходуемую в приемниках.

PП = L
k = 1 I 2 k * Rk
L количество приемников в цепи;
L
k = 1 I 2 k * Rk
— арифметическая сумма, здесь должны быть учтены как внешние резисторы, так и внутренние сопротивления самих источников.

6. Получаем равенство.

РИ = РП

Мощность трехфазной цепи.

При неравномерной нагрузке фаз активная мощность Р трехфазной системы равна сумме мощностей отдельных ее фаз:

При равномерной нагрузке трехфазной системы активные мощности Рф всех трех фаз равны, поэтому активная мощность трехфазной системы

где ? — угол сдвига фаз между фазным током и фазным напряжением.

Активную мощность можно выразить также через линейные ток Iл и напряжение Uл. Учитывая зависимости между фазными и линейными токами и напряжениями для схем «звезда» и «треугольник» при равномерной нагрузке фаз, имеем:

Аналогично могут быть получены формулы для реактивной и полной мощностей при равномерной нагрузке фаз:

Электрическая цепь и её элементы. Электрическая схема, понятия: ветвь, узел, контур.

Электрическая цепь — совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятии об электродвижущей силе, токе и напряжении.

Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя. Т.е. электрическая цепь — совокупность соединенных между собой источников электрической энергии, приемников и соединяющих их проводов (линия передачи).

Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.

Узел. Узел – это точка электрической цепи, где сходится не менее трех ветвей. Узел обозначается на схеме жирной точкой ( ) в том месте, где ветви соединяются между собой. В качестве примера на рис. 19 показаны узлы A,B,C. Узлы в схеме, показанной на рис. 20, определите самостоятельно.

Ветвь. Ветвь – это участок электрической цепи с последовательным соединением элементов, расположенный между двумя узлами. Подчеркнем, что именно споследовательным соединением элементов. Например на рис. 19 участок цепи между узлами А и В является ветвью. Ветвью является и участок цепи между узлами В иС. А вот участок цепи между узлами А и С ветвью не является. Сами подумайте почему. В схеме, показанной на рис. 20, имеется 6 ветвей. Определите их самостоятельно.

Контур. Контуром называют любой замкнутый участок электрической цепи. Особо следует выделить понятие «независимый контур». Независимый контур – это контур, в который входит хотя бы одна ветвь, не входящая в другие контуры.

Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы

Графическое изображение электрической цепи, содержащее условные обозначения ее элементов, называется схемой электри­ческой цепи.

Участок, вдоль которого ток один и тот же, называется ветвью электрической цепи.

Место соединения ветвей называется узлом электрической цепи.

Узел образуется при соединении в одной точке не менее трех ветвей, например на схеме рис. 3.16 к узлу 6 подключены четыре ветви.Всего узлов четыре 1,3,4,6.

Ветви, не содержащие источников электрической энергии, называются пассивными, а ветви, в которые входят ис­точники,—активными.

Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром электрической цепи. Контур не включающий в себя остальные называется назависимым контуром электрической цепи.

На рис. 3.16 таких контуров четыре:1-2-3-1; 1-3-6-1; 3-4-6-3, 4-5-6-4.

На схемах стрелками отмечаются положительные направления ЭДС напряжений и токов. Направление ЭДС может быть указано обозначением полярности зажимов источника: внутри источника ЭДС направлена от отрицательного зажима к положи­тельному (так же как и ток).

Рисунок 1-Схема электрической цепи

В предложенной схеме (рисунок 1)

количество узлов 3

количество ветвей 5

количество независимых контуров3

4.Сформулируйте первый и второй законы Кирхгофа. Приведите примеры в общем виде.

Первый закон Кирхгофа

Первый закон Кирхгофа применяется к узлу электрической цепи: алгебраическая сумма токов в ветвях соединённых в один узел равна нулю:

где I – ток в ветви,А.

В эту сумму токи входят с разными знаками, в зависимости от направления их по отношению к узлу. На основании первого закона Кирхгофа для каждого узла можно составить уравнение токов. Например для схемы 1 уравнения имеют вид:

Узел 1: — I1 – I2 + I3 =0

Узел 3: I1 + I2 – I7 – I4 = 0

Узел 4: I4 – I5 + I6 = 0

Узел 6: — I3 + I7 + I5 – I6 = 0

Этот закон следует из принципа непрерывности тока. Если допустить преобладание в узле токов одного направления, то заряд одного знака должен накапливаться, а потенциал узловой точки непрерывно изменяться, что в реальных цепях не наблюдается.

Рисунок 1-Схема электрической цепи

Второй закон Кирхгофа

Второй закон Кирхгофа применяется к контурам электрических цепей: в контуре электрической цепи алгебраическая сумма ЭДС , входящих в контур,равна алгебраической сумме падений напряжений на пассивных элементах этого контура:

где I – ток в ветви,А;

При этом положительными считаются токи и ЭДС, направление которых совпадает с направлением обхода.

Согласно этому правилу, запишем уравнения для двух других контуров схемы, представленной на схеме 1:

Ссылка на основную публикацию
Что делать если отключился звук на компьютере
Мы зарегистрировали подозрительный трафик, исходящий из вашей сети. С помощью этой страницы мы сможем определить, что запросы отправляете именно вы,...
Фотографии купе в поезде
Интересный фотоотчет о поездке на одном из первых рейсов двухэтажных поездов. Смотрим далее, как все устроено внутри таких двухэтажных вагонов...
Фотография с самым большим разрешением в мире
Представляем вашему вниманию нашу подборку самых больших фотографий в мире. Для их просмотра вам будет необходим FlashPlayer. Его можно скачать...
Что делать если полетели драйвера видеокарты
Распространенная ошибка в Windows 7 и реже в Windows 10 и 8 — сообщение «Видеодрайвер перестал отвечать и был успешно...
Adblock detector