Что можно написать на python

Что можно написать на python

  • Переводы, 6 сентября 2018 в 19:22
  • Никита Прияцелюк

Python — один из самых популярных и востребованных языков программирования. На это есть несколько причин:

  • Его легко изучить.
  • Он очень универсальный.
  • У него есть множество модулей и библиотек.

В процессе работы с Python каждый находит для себя какие-то полезные модули и приёмы. В этой подборке вы узнаете о некоторых полезных хитростях.

all и any

Одна из многих причин популярности Python — его читабельность и выразительность.

Часто шутят, что Python — это «исполняемый псевдокод». Однако когда вы можете писать код таким образом, становится сложно не согласиться:

bashplotlib

Хотите строить графики в консоли?

$ pip install bashplotlib

Стройте на здоровье.

collections

В Python есть классные встроенные типы данных, но порой они ведут себя не совсем так, как хотелось бы.

К счастью, во встроенной библиотеке Python есть модуль collections с удобными дополнительными типами данных:

Когда-нибудь задумывались о том, как заглянуть внутрь объекта в Python и посмотреть на его атрибуты? Конечно, задумывались.

Используем командную строку:

Это может пригодиться при интерактивной сессии в Python, а также для динамического изучения объектов и модулей, с которыми вы работаете.

emoji

$ pip install emoji

И не делайте вид, что не хотите попробовать:

from __future__ import

Одним из последствий популярности Python является то, что постоянно разрабатываются и выходят новые версии. Новые версии — новые возможности, но только не для вас, если вы пользуетесь устаревшей.

Впрочем, не всё так плохо. Модуль __future__ даёт возможность импортировать функциональность будущих версий Python. Это прямо как путешествие во времени, или магия:

geopy

Программистам может быть сложно ориентироваться в географии. Однако модуль geopy всё упрощает:

$ pip install geopy

Он работает путём абстрагирования API разных сервисов геокодирования. Этот модуль даёт возможность узнать полный адрес места, его долготу и широту и даже высоту.

Также в нём есть полезный класс Distance . Он высчитывает расстояние между двумя местами в удобной единице измерения.

howdoi

Зависли над какой-то проблемой и не можете вспомнить её решение? Нужно зайти на StackOverflow, но не хочется покидать терминал?

Тогда вам не обойтись без этого инструмента командной строки:

$ pip install howdoi

Задайте любой вопрос, и он постарается найти ответ на него:

Но будьте осторожны: он извлекает код из топовых ответов на StackOverflow и не всегда даёт полезную информацию:

$ howdoi exit vim

inspect

Модуль inspect пригодится для понимания того, что происходит за кулисами в Python. Вы даже можете вызывать его методы на них самих!

Ниже используется метод inspect.getsource() для вывода его собственного исходного кода. Также используется метод inspect.getmodule() для вывода модуля, в котором его определили.

Последняя команда выводит номер строки, на которой она сама находится:

Конечно, кроме таких банальных применений этот модуль может оказаться полезным для понимания того, что делает ваш код. Также вы можете использовать его, чтобы писать самодокументированный код.

Библиотека Jedi предназначена для автодополнения и анализа кода. Она ускоряет процесс написания кода и делает его более продуктивным.

Если вы не разрабатываете свою IDE, то вам, наверное, будет более интересно использовать Jedi в качестве расширения редактора. К счастью, уже есть много вариантов.

Возможно, вы уже встречались с Jedi — IPython использует эту библиотеку для автодополнения.

**kwargs

Когда изучаешь любой язык, на пути встречается множество краеугольных камней. В случае с Python понимание таинственного синтаксиса **kwargs можно считать одним из них.

Две звёздочки впереди объекта словаря дают возможность передавать в функцию содержимое этого словаря как именованные аргументы.

Ключи словаря — это имена аргументов, а значения передаются в функцию. Вам даже не обязательно называть его kwargs :

Это полезно в тех случаях, когда ваши функции должны обрабатывать именованные аргументы, не определённые заранее.

Прим.перев. Также это может пригодиться при написании функций-обёрток, которые передают все аргументы другой функции.

Генераторы списков

Ещё одна классная особенность Python, дающая возможность быстро создавать списки. Такие выражения позволяют легко писать чистый код, который читается почти как естественный язык:

У Python есть хорошая встроенная поддержка функционального программирования. Одной из самых полезных возможностей является функция map() , особенно в сочетании с лямбда-функциями:

Здесь map() применяет простую лямбда-функцию на каждом элементе x и возвращает объект map , который можно преобразовать в какой-нибудь итерируемый объект вроде списка или кортежа.

newspaper3k

Если вы ещё с ним не встречались, то приготовьтесь к тому, что модуль newspaper снесёт вам крышу.

Он даёт возможность извлекать статьи и связанные мета-данные из множества разных источников. Можно извлечь изображения, текст и имена авторов.

В нём даже есть встроенная NLP-функциональность.

Поэтому, если вы собирались использовать BeautifulSoup или другую библиотеку для вебскрапинга в своём следующем проекте, лучше сэкономьте своё время и силы и установите newspaper:

$ pip install newspaper3k

Перегрузка операторов

В Python есть поддержка перегрузки операторов — одной из тех штук, о которых говорят все настоящие computer-scientis’ы.

На самом деле идея проста. Когда-нибудь задумывались, почему Python позволяет использовать оператор + как для сложения чисел, так и для конкатенации строк? За этим как раз и стоит перегрузка операторов.

Вы можете определять объекты, которые используют стандартные символы операторов любым образом. Это позволяет применять их в контексте объектов, с которыми вы работаете:

pprint

Стандартная функция Python print() делает своё дело. Но если попытаться вывести какой-нибудь большой вложенный объект, результат будет выглядеть не очень приятно.

Здесь на помощь приходит модуль из стандартной библиотеки pprint (pretty print). С его помощью можно выводить объекты со сложной структурой в читабельном виде.

Мастхэв для любого Python-разработчика, работающего с нестандартными структурами данных:

Queue

Python поддерживает многопоточность, в использовании которой помогает стандартный модуль Queue.

Он позволяет реализовывать такую структуру данных, как очередь. Очереди позволяют добавлять и извлекать элементы согласно определённому правилу.

Очереди «первым пришёл — первым ушёл» («first in, first out», FIFO) позволяют извлекать объекты в порядке их добавления. Из очередей «последним пришёл — первым ушёл» («last in, first out», LIFO) можно извлекать последние добавленные объекты.

Наконец, приоритетные очереди позволяют извлекать объекты согласно порядку их сортировки.

Здесь можно посмотреть на пример использования очередей в многопоточном программировании на Python.

__repr__

При определении класса или объекта полезно добавлять «официальный» способ представления объекта строкой. Например:

Это сильно упрощает отладку. Вот всё, что вам нужно сделать:

Прим.перев. Метод __repr__() позволяет определять строковое представление, предназначенное для программиста и удобное при использовании во время отладки, а метод __str__() позволяет определять понятное пользователю строковое представление, которое можно отображать в интерфейсе программы.

Python — отличный скриптовый язык. Но иногда стандартные библиотеки os и subprocess вызывают только головную боль.

Библиотека sh может стать приятной альтернативой.

Она позволяет вызывать любую программу как обычную функцию, что полезно для автоматизации различных задач исключительно с помощью Python:

Прим.перев. Библиотека sh поддерживает только платформы Linux и macOS; для работы на Windows вам придётся поискать другой инструмент.

Аннотации типов

Python — динамически типизированный язык. Вам не нужно указывать тип данных при определении переменных, функций, классов и т.д.

Это позволяет ускорить процесс разработки. Однако мало что раздражает так сильно, как ошибка времени выполнения, возникшая из-за простого несовпадения типа.

С версии Python 3.5 при определении функции можно добавлять аннотации типов:

Можно даже определять псевдонимы типов:

Хотя их использование опционально, с помощью аннотаций типов код можно сделать более понятным.

Также они позволяют использовать инструменты для проверки типов, чтобы отлавливать ошибки TypeError.

Стандартный модуль uuid — быстрый и простой способ сгенерировать UUID (universally unique identifier, глобально уникальный идентификатор).

Так мы создаём случайное 128-битное число, которое почти наверняка будет уникальным.

Существует более 2¹²² возможных UUID. Это более 5 ундециллионов или 5,000,000,000,000,000,000,000,000,000,000,000,000.

Вероятность нахождения дубликатов в заданном наборе крайне мала. Даже при наличии триллиона UUID вероятность того, что среди них есть дубликат, гораздо меньше, чем один к миллиарду.

Читайте также:  Что такое сетевой пароль в windows 7

Вполне недурно для двух строк кода.

Виртуальные среды

Часто Python-программисты работают над несколькими проектами одновременно. К сожалению, порой два проекта зависят от разных версий одной зависимости. Какую же установить?

К счастью, в Python есть поддержка виртуальных сред, которые позволяют взять лучшее от двух миров. В командной строке нужно ввести:

Теперь вы можете иметь разные независимые версии Python на одной машине.

wikipedia

У Wikipedia есть классное API, которое позволяет получить доступ к непревзойдённому источнику полностью бесплатной информации.

Модуль wikipedia делает доступ к этому API чуть ли чрезмерно удобным:

Как и настоящий сайт, модуль предоставляет поддержку многих языков, разрешение многозначности страниц, получение случайной страницы и даже метод donate() .

Юмор — ключевая особенность Python. В конце концов, язык был назван в честь британского комедийного шоу «Летающий цирк Монти Пайтона». Во многих местах официальной документации можно найти отсылки к самым известным эпизодам шоу.

Конечно, чувство юмора не заканчивается на документации. Попробуйте ввести следующую строку:

Оставайся собой, Python. Оставайся собой.

YAML означает «YAML — не язык разметки» («YAML Ain’t Markup Language»). Это язык форматирования данных, являющийся надмножеством JSON.

В отличие от JSON, YAML может хранить более сложные объекты и ссылаться на собственные элементы. Также там можно писать комментарии, что делает YAML подходящим для конфигурационных файлов.

Модуль PyYAML позволяет использовать YAML в Python. Установить можно так:

$ pip install pyyaml

А затем импортировать:

PyYAML позволяет хранить любые Python-объекты и экземпляры любых пользовательских классов.

Напоследок ещё одна клёвая штука. Когда-нибудь возникала необходимость создать словарь из двух списков?

Встроенная функция zip() принимает несколько итерируемых объектов и возвращает последовательность кортежей. Каждый кортеж группирует элементы объектов по их индексу.

Можно провести операцию, обратную zip() , с помощью zip(*) .

А какие приёмы или полезные библиотеки знаете вы? Делитесь в комментариях.

У вас получилось: вы закончили курсы, или дочитали книгу, которая дает вам базу для программирования в Python. Вы освоили списки, словари, классы, может даже некоторые объектно-ориентированные концепции.

И что дальше?

Python – это очень универсальный язык программирования, с плеядой пользователей во всех возможных сферах. Если вы освоили основы Python, и хотите построить на нем что-нибудь – важно понять, какой первый шаг следует сделать.

Содержание:

В данной статье мы рассмотрим несколько разных проектов, ресурсов и руководств, которые вы можете использовать для создания чего-либо в Python.

Что другие делают в Python?

Вы, наверное, думаете, что люди создают в Python в реальной жизни? Для начала, давайте быстренько пройдемся по крупным компаниям, которые используют данный язык.

Google, к примеру, использовали Python с самого начала, и сегодня он занимает место ведущих гигантов среди языков, ориентированных на серверную сторону. Гвидо ван Россум, добрый пожизненный диктатор Python (уже нет) даже работал нам на протяжении нескольких лет, наблюдая за тем, как развивается язык.

Spotify использует язык из-за его сервисов анализа данных и бэкенда. Согласно команде разработчиков, простота использования Python позволяет достичь молниеносной скорости разработки. Spotify выполняет тонны анализов, чтобы собирать рекомендации своим пользователям, так что им нужно что-нибудь, что может выполнять такую работу быстро. Python – это решение!

Что я могу делать в Python?

Начиная с веб разработки до работы с научными данными, машинным обучением, и пр., приложения Python не имеют границ. Рассмотрим несколько проектов, которые помогут вам развить ваши навыки работы с Python.

#1: Автоматизация нудных дел

Это ресурс по «практическому программированию для начинающих». Как и говорится в заголовке, с этой книгой вы можете узнать, как автоматизировать скучные процессы, такие как обновление электронных таблиц, или переименовывать файлы на компьютере. Это отличная отправная точка для тех, кто уже освоил основы Python.

У вас будет шанс попрактиковаться в том, что вы уже выучили на данный момент, создавая словари, проводя скрейпинг сайтов, работая с файлами и создавая объекты и классы. Практические приложения, встречающиеся в этой книге дадут вам реальное представление о том, что вы можете делать незамедлительно.

#2: Держать руку на курсе Биткоина

Похоже, что сегодня о Bitcoin Python говорят все. С тех пор, как в декабре 2017, когда курс почти поднялся до отметки в 20 000 долларов, криптовалюта стала на слуху у миллионов. Цена продолжает колебаться, но многие считают инвестиции целесообразными.

Если вы хотите обогатиться на виртуальном золоте и хотите знать, когда делать следующий шаг, то вам нужно иметь представление о лучших ценах на bitcoin. Это руководство может научить вас, как использовать навыки работы в Python, чтобы построить собственную систему уведомлений о курсе Bitcoin.

Основа этого проекта – это создание IFTTT (if this, then that) апплетов. Вы узнаете, как использовать библиотеку requests для отправки запросов HTTP и как использовать webhook для подключения вашего приложения к внешним сервисам.

Этот проект – отличная отправная точка для начинающего питониста, который заинтересован в крипте. Сервис, который вы построите с данным руководством может быть расширен под другие валюты, так что если вы также рассматриваете Ethereum – двери открыты!

#3: Создание калькулятора

Этот простой проект – отличный шлюз в мире GUI программирования. Создание бекенд сервисов – это важная часть развертывания, но может появиться необходимость во фронтенде, которую стоит учитывать. Создание приложений, которыми пользователи могут легко пользоваться – это первостепенная важность.

Если вам интересен UXUI дизайн, то это руководство вам понравится. Вы будете работать с модулем tkinter, стандартным пакетом графического пользовательского интерфейса, который поставляется вместе с Python.

Модуль tkinter – это обертка вокруг Tcl/Tk, комбинация скриптового языка Tcl и расширения фреймворка графического пользовательского интерфейса Tk. Если у вас есть установленный Python, то у вас уже есть готовый к использованию tkinter. Вам нужно сделать простой вызов перед началом:

После проведения установки, вы можете начать работу с постройкой своего первого GUI калькулятора в Python.
Попрактикуйтесь в использовании модуля tkinter и наблюдайте за тем, как ваше виденье материализуется на экране. После того, как вы окрепнете, вы можете начать работать с другими GUI инструментами Python. Ознакомьтесь к официальной документацией GUI программирования в Python для дополнительной информации.

#4: Майнинг данных Twitter

Благодаря интернету, и (все чаще и чаще) интернету вещей (IoT) – у нас есть доступ к огромному количеству данных, о которых не могли мечтать всего десять лет назад. Аналитика – это огромная часть любой сферы, которая связана с данными. О чем люди разговаривают? Какие шаблоны видны в их поведении?

Твиттер – отличное место, чтобы получить ответы на эти вопросы. Если вам интересен анализ данных, тогда майнинг данных в Twitter – отличный способ попробовать свои навыки в Python, чтобы ответить на вопросы об окружающем мире.

В учебном пособии по анализу Твиттера позволит вам получать данные из Твиттера и анализировать настроения пользователей в среде docker. Вы узнаете, как регистрировать приложение вместе с Твиттером, это понадобиться вам, чтобы получить доступ к потоковым API.

Вы увидите, как использовать Tweepy для фильтрации твитов, которые вы хотите вытягивать, TextBlob для подсчета настроения этих твитов, Elasticsearch для анализа содержимого этих твитов и Kibana для показа результатов. По окончанию данного руководства, вы уже будете готовы к тому, чтобы заняться другими проектами, которые используют Python для обработки текстов и распознавания речи.

#5: Создание микроблога с помощью Flask

Похоже, что у каждого сегодня есть блог, и нет ничего плохого в том, чтобы иметь собственный уютный хаб онлайн. С развитием Twitter и Instagram, микроблоги стали чрезвычайно популярными. В этом проекте Мигеля Гринерга, вы научитесь создавать собственный микроблог.

Он называется «Мега-руководство Flask», и однозначно соответствует названию. Проработав 23 главы, вы получите глубокое представление о веб-фреймворке Flask. К концу проекта, вы сможете создать полностью работающее веб приложение.
Вам не нужно знать что-либо о Flask, чтобы приступить к делу, так что это идеально для тех, у кого чешутся руки, чтобы приступить к веб разработке.

Читайте также:  Как играть в бладборн с другом

Руководство недавно было обновлено, и теперь включает в себя контент, который поможет вам стать лучшим веб разработчиком. Вы можете прочесть его бесплатно онлайн, купить экземпляр в Amazon, или пройтись с автором по онлайн курсу пошагово. После окончания курса, вы сможете перейти к Django и создавать более масштабные веб приложения.

#6: Создание блокчейна

Хотя блокчейн в основном разрабатывается как финансовая технология, его можно применять во многих других областях. Блокчейны можно применять практически во всех транзакциях: от сделок с недвижимостью, до передач медицинских отчетов.

Вы можете получить лучшее представление о том, как это работает, построив свой блокчейн! Руководство Hackernoon поможет вам реализовать блокчейн с нуля. К концу проекта, вы получите глубокое представление того, как работает эта технология транзакций.

Вы будете работать с HTTP клиентами и библиотекой requests. После установки веб-фреймворка Flask, вы сможете использовать запросы HTTP и взаимодействовать со своим блокчейном в интернете.

Помните, блокчейн – это не только для фанатов криптовалюты. Построив такой самим, вы легко найдете креативный способ реализовать эту технологию в интересующей вас области.

#7: Разбираемся с лентой Twitter

Интересует постройка веб приложений, но не хватает уверенности, чтобы начать мега-проект? Не беспокойтесь, мы кое-что подготовили для вас. С нами вы сможете научиться создавать простое веб приложение всего за несколько часов.

Боб Белдерброс делится кейсом, где он создал 40th PyBites Code Challenge, в котором участникам нужно было построить простое веб приложение для лучшей навигации по ленте новостей Daily Python Tip в Твиттере. Вы можете пройтись по результатам данного челенджа и ознакомиться с кодом.

Вместо Flask, вы будете использовать микро веб-фреймворк Bottle. Он славится тем, что является слабо зависимым решением для быстрого создания приложений. Так как он был разработан таким образом, чтобы быть легким и простым в использовании, вы сможете получить свое приложение практически мгновенно.
Вы также сможете работать с модулем Tweepy, чтобы загружать данные из API Твиттера. Вы сможете хранить данные в базе SQLAlchemy или Peewee, так что заодно получите небольшую практику в запросах SQL.

#8: Играйте в PyGames

Этот раздел для тех, кто хочет весело провести время. Python может быть использован для написания различных аркадных игр, адвенчур и пазлов, на разработку которых уйдет всего несколько дней. К классическим играм, типа пинг-понга вы сможете перейти, когда освоите новые навыки программирования.

Библиотека Pygame заметно упрощает разработку собственных игр. Он включает в себя практически все необходимое, чтобы вы могли приступить к разработке игр.

Pygame совершенно бесплатный и находится в открытом доступе. Он включает в себя библиотеки компьютерной графики и работы со звуком, которые вы можете использовать для внедрения интерактивного функционала в ваше приложение.

Вам доступны десятки игр, которые вы можете создать при помощи библиотеки. Что-бы вы не хотели придумать, чувствуйте себя комфортно и делитесь своими работами в сообществе Pygame!

#9: Выберите свое собственное приключение

Если вам больше по духу повествование, то у вас все еще масса инструментов, чтобы создать нечто крутое в Python.
Язык очень прост для написания, что делает его идеальной средой для разработки интерактивного чтива. С этим бесплатным руководством, вы сможете пошагово ознакомиться с написанием текстовых игр в Python.

Руководство подразумевает базовое понимание программирования в Python, и помогает проложить мост между тем, что вы уже знаете и неизведанными землями для построения приложения.

Если вы хотите, чтобы ваша история вышла на новый уровень, вы можете использовать движок, вроде RenPy, чтобы добавить звуки и изображения в вашу игру, создав визуальную новеллу с полным погружением. (После этого, вы можете выложить игру в Steam и посмотреть, как она расходится! Лучший способ получить отзыв о вашей работе – создать собственный релиз на мировом рынке.)

#10: Скажите “Привет, мир!” машинному обучению

Машинное обучение может быть фундаментальной областью в понимании искусственного интеллекта. Однако, в этой сфере легко запутаться, так как она постоянно развивается и меняется.
К счастью, в вашем распоряжении имеются онлайн ресурсы, которые могут помочь освоиться, перед тем как нырнуть с головой в мир под названием data science. Это руководство создано Джейсоном Браунли, и является хорошим примером введением в использование Python для машинного обучения.

Вы пройдетесь по ряду базовых алгоритмов машинного обучения, как и по библиотекам Python, которые помогут вам в составлении прогнозов.

Руководство очень простое и в нем легко ориентироваться. Вы можете окончить его всего за несколько часов. По окончанию курса, у вас будет общее представление о том, как использовать Python в науке данных.

Когда вы будете уверены в том, что можно нырять с головой, можете ознакомиться с этими руководствами, где вы сможете научиться анализировать отпечатки, создавать визуализации, распознавать речь и лица, и все это в Python!

#11: Бросаем вызов!

Если вы не уверены в том, что готовы окунаться в некоторые крупные проекты, упомянутые ранее, при этом мелкие вас не очень интересуют, вы можете думать: а чем еще можно заняться?

Кодерские задачки могут помочь вам попрактиковаться в навыках работы в Python и получить поверхностное представление обо всем спектре вещей, которые вы можете делать в Python,
Проще говоря: вам предоставят проблему, и вам нужно найти решение, в котором используется Python.

У вас будет шанс разработать решения, которые имеют смысл для вас, при этом у вас есть возможность углубиться в язык Python при помощи подсказок. Так вы получите представление о том, какие модули вам нужно импортировать, чтобы решить проблему.

Кодовые челенджы – это хороший способ освоить наибольшее количество библиотек, методов и фреймворков. Вы гарантированно найдете что-нибудь, что зацепит ваш интерес, и захотите уделять этому свободное время. Вы можете вернуться к этому списку и найти то, что зажгло в вас интерес, когда вы использовали это в одном из челенджей.

Чтобы начать, попробуйте одно из следующих, чтобы оценить свои силы:

  • Python Challenge. Более 20 доступных уровней. Создавайте простые скрипты в Python, чтобы решить уровень. По интернету есть разбросанные подсказки, но старайтесь искать решение самостоятельно!
  • PyBites Code Challenge. Включает в себя 50 задач, и количество растет! Эти задачи направлены на то, чтобы вы научились работать в Python для создания приложений, которые будут решать определенные проблемы.

Если вы предпочитаете программировать в таких задачах самостоятельно вместо пошаговых инструкций, то не будет лишним иметь под рукой вспомогательный ресурс.

Книга Python Tricks – это отличный источник информации, который поможет при работе с задачами. В книге рассматриваются малоизвестные части Python, на основании которых и формируются задачи.

Чего (скорее всего) не стоит делать в Python?

Очевидно, что Python – чрезвычайно универсальный язык, с которым вы можете делать массу вещей. Но вы не можете делать буквально всё. Фактически, есть определенные сферы, на которые Python не рассчитан.

С точки зрения интерпретируемого языка, у Python есть проблемы со взаимодействия с низкоуровневыми устройствами, такими как драйверами устройств. Например, у вас будут проблемы, если вы захотите написать операционную систему только на Python. Вам лучше связать его с С или С++ для низкоуровневых приложений.

Однако, даже это может быть проблемой не долго. В качестве подтверждения гибкости Python, есть люди, которые работают над проектами, которые расширяют юзабилити Python для низкоуровневых взаимодействий. MicroPython – это один из таких проектов, разрабатывающих низкоуровневые возможности Python.

Что если вашей идеи нет в этом списке?

Ничего страшного! Этот список вряд ли можно назвать исчерпывающим: существует огромное количество других инструментов и приложений, которые вы можете построить в Python, которые мы не рассмотрели в данной статье. Не думайте, что ваши идеи должны как-либо ограничиваться данным списком. Это просто база, с которой вы можете начать.

Читайте также:  Сравнить тарифы мтс билайн и мегафон

В этом видео вы можете почерпнуть несколько идей из других проектов, под которые Python хорошо заточен. Вы также можете ознакомиться с данным постом в блоге, автор которого подсказывает, где найти вдохновение для новых проектов Python.
Наконец, вы вольны искать и находить проекты, которые вам интересны.

Что делать дальше?

Ну, вот и все! Одиннадцать путей от новичка в Python до прожженного питониста!
Неважно, с чего вы хотите начать, вам открыты бесчисленные проспекты для разработки ваших навыков программирования. Начинайте с чего угодно! Родилась идея, которой нет в этом списке? Поделитесь в комментариях! Вы можете предложить идеальный проект для программиста-побратима.

Если вы застряли и ищете толчок в нужном направлении, поговорите об этом! Программирование не обязательно должно быть одиночным делом.

Если вы ищете способ задать вопрос и получить быстрый ответ от профессионалов – Python Форум всегда свободен. Это частное сообщество поможет вам найти контакт с теми, кто поможет вам пройти через возникшие стены, на которые вы наткнулись, работая в Pyhton.

Будучи удачно спроектированным языком программирования Python прекрасно подходит для решения реальных задач из разряда тех, которые разработчикам приходится решать ежедневно. Он используется в самом широком спектре применений — и как инструмент управления другими программными компонентами, и для реализации самостоятельных программ. Фактически круг ролей, которые может играть Python как многоцелевой язык программирования, практически не ограничен: он может использоваться для реализации

всего, что угодно, — от веб-сайтов и игровых программ до управления роботами и космическими кораблями.

Однако сферу использования Python в настоящее время можно разбить на несколько широких категорий. Следующие несколько разделов описывают наиболее типичные области применения Python в наши дни, а также инструментальные средства, используемые в каждой из областей. У нас не будет возможности заняться исследованием инструментов, упоминаемых здесь. Если какие-то из них заинтересуют вас, обращайтесь на веб-сайт проекта Python за более

Системное программирование

Стандартная библиотека Python полностью отвечает требованиям стандартов POSIX и поддерживает все типичные инструменты операционных систем: переменные окружения, файлы, сокеты, каналы, процессы, многопоточную модель выполнения, поиск по шаблону с использованием регулярных выражений, аргументы командной строки, стандартные интерфейсы доступа к потокам данных, запуск команд оболочки, дополнение имен файлов и многое

Кроме того, системные интерфейсы в языке Python созданы переносимыми, например сценарий копирования дерева каталогов не требует внесения изменений, в какой бы операционной системе он ни использовался. Система Stackless Python, используемая компанией EVE Online, также предлагает улучшенные решения, применяемые для параллельной обработки данных.

Графический интерфейс

tkinter без изменений могут использоваться в MS Windows, X Window (в one-рационных системах UNIX и Linux) и Mac OS (как в классической версии, так и в OS X). Свободно распространяемый пакет расширения PMW содержит дополнительные визуальные компоненты для набора tkinter. Кроме того, существует прикладной интерфейс wxPython GUI API, основанный на библиотеке C++, который предлагает альтернативный набор инструментальных средств построения переносимых графических интерфейсов на языке Python.

Инструменты высокого уровня, такие как PythonCard и Dabot построены на основе таких API, как wxPython и tkinter. При выборе соответствующей библиотеки вы также сможете использовать другие инструменты создания графического интерфейса, такие как Qt (с помощью PyQt), GTK (с помощью PyGtk), MFC (с помощью PyWin32), .NET (с помощью IronPython), Swing (с помощью Jython — реализации языка Python на Java, которая описывается в главе 2, или JPype). Для разработки приложений с веб-интерфейсом или не предъявляющих высоких требований к интерфейсу можно использовать Jython, веб-фреймворки на языке Python и CGI-сценарии, которые описываются в следующем разделе и обеспечивают дополнительные возможности по созданию пользовательского интерфейса.

Веб-сценарии

писем электронной почты; загружать веб-страницы с указанных адресов URL; производить разбор разметки HTML и XML полученных веб-страниц; производить взаимодействия по протоколам XML-RPC, SOAP и Telnet и многое другое.

Библиотеки, входящие в состав Python, делают реализацию подобных задач удивительно простым делом.

Кроме того, существует огромная коллекция сторонних инструментов для создания сетевых программ на языке Python, которые можно найти в Интернете. Например, система HTMLGen позволяет создавать HTML-страницы на основе описаний классов Python. Пакет mod_python предназначен для запуска сценариев на языке Python под управлением веб-сервера Apache и поддерживает шаблоны механизма Python Server Pages. Система Jython обеспечивает

бесшовную интеграцию Python/Java и поддерживает серверные апплеты, которые выполняются на стороне клиента.

Помимо этого для Python существуют полноценные пакеты веб-разработки, такие как Django, TurboGears, web2py, Pylons, Zope и WebWare, поддерживающие возможность быстрого создания полнофункциональных высококачественных веб-сайтов на языке Python. Многие из них включают такие возможности, как объектно-реляционные отображения, архитектура Модель/Представление/Контроллер (Model/View/Controller), создание сценариев, выполняющихся на стороне сервера, поддержка шаблонов и технологии AJAX, предоставляя

законченные и надежные решения для разработки веб-приложений.

Интеграция компонентов

системы на языке С и C++ делает его удобным и гибким языком для описания поведения других систем и компонентов. Например, интеграция с библиотекой на языке С позволяет Python проверять наличие и запускать библиотечные компоненты, а встраивание Python в программные продукты позволяет производить настройку программных продуктов без необходимости пересобирать эти продукты или поставлять их с исходными текстами.

Такие инструменты, как Swing и SIP, автоматически генерирующие программный код, могут автоматизировать действия по связыванию скомпилированных компонентов в Python для последующего их использования в сценариях, а система Cython позволяет программистам смешивать программный код на Python и С. Такие огромные платформы на Python, как поддержка СОМ

в MS Windows, Jython — реализация на языке Java, IronPython — реализация на базе .NET и разнообразные реализации CORBA, предоставляют альтернативные способы организации взаимодействий с программными компонентами. Например, в операционной системе Windows сценарии на языке Python могут использовать платформы управления такими приложениями, как MS Word и Excel.

Приложения баз данных

Стандартный модуль pickle реализует простую систему хранения объектов, что позволяет программам сохранять и восстанавливать объекты Python в файлах или в специализированных объектах. В Сети можно также найти систему, созданную сторонними разработчиками, которая называется ZODB.

Она представляет собой полностью объектно-ориентированную базу данных

для использования в сценариях на языке Python. Существуют также

инструменты, такие как SQLObject и SQLAlchemy, которые отображают

реляционные таблицы в модель классов языка Python. Начиная с версии Python 2.5,

стандартной частью Python стала база данных SQLite.

Быстрое создание прототипов

оставить на языке Python, что существенно упростит сопровождение и использование такой системы.

Программирование математических

и научных вычислений

Дополнительные инструменты математических вычислений для Python поддерживают возможность создания анимационных эффектов и трехмерных объектов, позволяют организовать параллельные вычисления и так далее. Например, популярные расширения SciPy и ScientificPython предоставляют дополнительные библиотеки для научных вычислений и используют возможности расширения NumPy.

Игры, изображения, искусственный интеллект,

XML роботы и многое другое

• Создавать игровые программы и анимационные ролики с помощью

• Обмениваться данными с другими компьютерами через последовательный

порт с помощью расширения PySerial

• Обрабатывать изображения с помощью расширений PIL, PyOpenGL,

Blender, Maya и других

• Управлять роботом с помощью инструмента PyRo

• Производить разбор XML-документов с помощью пакета xml, модуля xmlrp-

clib и расширений сторонних разработчиков

• Программировать искусственный интеллект с помощью эмулятора нейро-

сетей и оболочек экспертных систем

• Анализировать фразы на естественном языке с помощью пакета NLTK.

Можно даже разложить пасьянс с помощью программы PySol. Поддержку многих других прикладных областей можно найти на веб-сайте PyPI или с помощью поисковых систем (ищите ссылки с помощью Google или на сайте http://www.python.org).

Вообще говоря, многие из этих областей применения Python — всего лишь разновидности одной и той же роли под названием «интеграция компонентов». Использование Python в качестве интерфейса к библиотекам компонентов, написанных на языке С, делает возможным создание сценариев на языке Python для решения задач в самых разных прикладных областях. Как универсальный, многоцелевой язык программирования, поддерживающий возможность интеграции, Python может применяться очень широко.

Ссылка на основную публикацию
Что делать если отключился звук на компьютере
Мы зарегистрировали подозрительный трафик, исходящий из вашей сети. С помощью этой страницы мы сможем определить, что запросы отправляете именно вы,...
Фотографии купе в поезде
Интересный фотоотчет о поездке на одном из первых рейсов двухэтажных поездов. Смотрим далее, как все устроено внутри таких двухэтажных вагонов...
Фотография с самым большим разрешением в мире
Представляем вашему вниманию нашу подборку самых больших фотографий в мире. Для их просмотра вам будет необходим FlashPlayer. Его можно скачать...
Что делать если полетели драйвера видеокарты
Распространенная ошибка в Windows 7 и реже в Windows 10 и 8 — сообщение «Видеодрайвер перестал отвечать и был успешно...
Adblock detector