Целая часть действительного числа

Целая часть действительного числа

Целой частью действительного числа x (x∈R) называется наибольшее целое число, не превосходящее x.

Целую часть числа x обозначают символом [x].

[x] читают «антье от x».

Обозначение [x] в 1808 году ввёл К. Гаусс.

В частности, если n — целое число (n∈Z), то [n]=n.

Вычислить целую часть числа:

7,8; 0,12; -0,7; -4,92; 15 2/3; 5/7; -3/11; 8; -50.

Фактически вычисление целой части числа x представляет собой округление до ближайшего к числу x целого числа в меньшую сторону (то есть округление с недостатком).

Функцию, ставящую в соответствие каждому значению x его целую часть — число [x], называют целой частью числа x и обозначают y=[x] .

Функция целая часть числа определена для любого действительного x (x∈R).

Область значений функции y=[x] — множество целых чисел (y∈Z).

По определению целой части числа

18,4

Таким образом, x∈[-9;-6) и

На промежутке [-9;-6) [x] принимает три значения.

Подставив в равенство (*) [x]= -9, найдём x:

Так как -9∈[-9;-8), то x= -9 — корень уравнения.

2. При x∈[-8;-7) [x]= -8, откуда

-7,5∈[-8;-7), поэтому x= -7,5 — корень уравнения.

3. При x∈[-7;-6) [x]= -7, и

-6∉[-7;-6), значит x= -6 не является корнем уравнения.

Разделы: Математика

Цели урока: познакомить учащихся с понятием целой и дробной части числа; сформулировать и доказать некоторые свойства целой части числа; познакомить учащихся с широким спектром применения целой и дробной части числа; совершенствовать умение решать уравнения и системы уравнений, содержащих целую и дробную части числа.

Оборудование: плакат “Кто смолоду делает и думает сам, тот и становится потом надёжнее, крепче, умнее” (В. Шукшин).
Проектор, магнитная доска, справочник по алгебре.

  1. Организационный момент.
  2. Проверка домашнего задания.
  3. Изучение нового материала.
  4. Решение задач по теме.
  5. Итоги урока.
  6. Домашнее задание.
Читайте также:  Как убрать сноски из документа word

I. Организационный момент: сообщение темы урока; постановка цели урока; сообщение этапов урока.

II. Проверка домашнего задания.

Ответить на вопросы учащихся по домашнему заданию. Решить задачи, вызвавшие затруднения при выполнении домашней работы.

III. Изучение нового материала.

Во многих задачах алгебры приходится рассматривать наибольшее целое число, не превосходящее данного числа. Такое целое число получило специальное название “целая часть числа”.

Целой частью действительного числа х называется наибольшее целое число, не превосходящее х. Целая часть числа х обозначается символом [x] или Е(х) (от французского Entier “антье” ─ “целый”). Например, [5] = 5, [ π ] = 3,

Из определения следует, что [x] ≤ х, так как целая часть не превосходит х.

С другой стороны, т.к. [x] – наибольшее целое число, удовлетворяющее неравенству, то [x] +1>х. Таким образом, [x] есть целое число, определяющееся неравенствами [x] ≤ х α = υ ─ [x] называют дробной частью числа х и обозначают <х>. Тогда имеем: 0 ≤ <х>0 ≤ α о [x+у] = [x] + [у].

Если 1≤ α т.е. α = 1 + α` , где 0 ≤ α` α` и

Это свойство распространяется на любое конечное число слагаемых:

Умение находить целую часть величины очень важно в приближенных вычислениях. В самом деле, если мы умеем находить целую часть величины х, то, приняв [x] или [x]+1 за приближенное значение величины х, мы сделаем погрешность, величина которой не больше единицы, так как

≤ х – [x] ≥ 0 , а во-вторых, в сумме, стоящей в середине полученного двойного неравенства, все слагаемые, начиная с третьего, равны 0, так что x .

Поскольку х – целое число, то остается проверить значения от 0 до 6. Решениями уравнения оказываются числа 0,4 и 5.

Читайте также:  Сетевые библиотеки для андроид

Задача 7. Решить систему уравнение

(Провести проверку с помощью проектора.)

Найти число корней уравнения

Преобразуем, неравенство к виду , откуда получим, что искомое количество целых чисел равно 5. Значит, число корней данного уравнения равно 5.

Задача 9. (Соросовская олимпиада).

а) провести проверку самостоятельных работ с помощью проектора;

б) ответить на вопросы:

  1. “Дайте определение целой и дробной части числа”;
  2. “При решении, каких задач используется целая и дробная часть числа?”;

в) выставление отметок.

VI. Домашнее задание.

Дополнительная задача (по желанию).

Некто измерил длину и ширину прямоугольника. Он умножил целую часть длины на целую часть ширины и получил 48; умножил целую часть длины на дробную часть ширины и получил 3,2; умножил дробную часть длины на целую часть ширины и получил 1,5. Определите площадь прямоугольника.

Целая часть числа Целой частью числа a (или антье) называется наибольшее целое число, не превосходящее числа a и обозначаемое $$left[ a
ight]$$ :

Например: $$ left[ <5,3>
ight] = 5quad left[ <sqrt 2 >
ight] = 1quad left[ <0,98>
ight] = 0quad left[ < — 3,7>
ight] = — 4quad left[ < — sqrt 7 >
ight] = — 3$$

Замечание. Равенство $$ left[ x
ight] = k$$ означает, что k — это целое число, такое, что $$ k le x

Ссылка на основную публикацию
Фотографии купе в поезде
Интересный фотоотчет о поездке на одном из первых рейсов двухэтажных поездов. Смотрим далее, как все устроено внутри таких двухэтажных вагонов...
Уравнение окружности в полярных координатах
Определение: замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра О), лежащей в той же плоскости, что...
Уравнение пучка прямых проходящих через точку
Совокупность прямых, проходящих через некоторую точку, называется пучком прямых с центром в этой точке. Если и - уравнения двух пересекающихся...
Фотография с самым большим разрешением в мире
Представляем вашему вниманию нашу подборку самых больших фотографий в мире. Для их просмотра вам будет необходим FlashPlayer. Его можно скачать...
Adblock detector